Quick Start
Get up and running with Aphelion in under 5 minutes.
Step 1: Create an Account
Sign up at console.aphl.ai
Step 2: Get Your API Key
After signing up, you'll receive an API key:
ap_live_a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6⚠️Keep your API key secure
Save this key securely. You won't see it again. Never commit it to version control.
Step 3: Install the SDK
Python
pip install aphelionNode.js
npm install aphelionStep 4: Execute Your First Tool
Python
from aphelion import Aphelion
client = Aphelion(
api_key="ap_live_...",
agent="my-first-agent"
)
# Execute a tool
result = client.execute(
"stripe.customers.create",
{
"email": "jane@example.com",
"name": "Jane Doe"
}
)
print(result)
# {"id": "cus_abc123", "email": "jane@example.com", ...}Node.js
import { Aphelion } from 'aphelion';
const client = new Aphelion({
apiKey: 'ap_live_...',
agent: 'my-first-agent'
});
const result = await client.execute(
'stripe.customers.create',
{
email: 'jane@example.com',
name: 'Jane Doe'
}
);
console.log(result);Step 5: Check the Console
Open console.aphl.ai to see:
- Your agent was created automatically
- The execution was logged
- Memory was stored
That's it. You've executed your first tool with Aphelion.
Environment Setup
We recommend storing your API key in environment variables:
.env
APHELION_API_KEY=ap_live_a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6Python
import os
from dotenv import load_dotenv
from aphelion import Aphelion
load_dotenv()
client = Aphelion(
api_key=os.getenv("APHELION_API_KEY"),
agent="my-agent"
)Node.js
import 'dotenv/config';
import { Aphelion } from 'aphelion';
const client = new Aphelion({
apiKey: process.env.APHELION_API_KEY,
agent: 'my-agent'
});API Key Types
| Key Type | Prefix | Use Case |
|---|---|---|
| Live | ap_live_ | Production |
| Test | ap_test_ | Development (sandbox mode) |
Test keys execute against sandbox/test versions of tools where available.
Using the REST API Directly
If you prefer to use the REST API directly:
Execute a Tool
POST
/v1/executecurl -X POST https://api.aphl.ai/v1/execute \
-H "Authorization: Bearer ap_live_..." \
-H "Content-Type: application/json" \
-d '{
"tool": "stripe.customers.create",
"params": {
"email": "jane@example.com",
"name": "Jane Doe"
},
"agent": "my-agent"
}'Response
{
"data": {
"id": "cus_abc123",
"object": "customer",
"email": "jane@example.com",
"name": "Jane Doe",
"created": 1704326400
},
"meta": {
"request_id": "req_xyz789",
"execution_id": "exec_def456",
"latency_ms": 142,
"memory_id": "mem_ghi789"
}
}Working with Memory
Every execution is automatically summarized and stored. Search across your agent's memory:
Python
# Search agent memory
memories = client.memory.search(
query="customer jane",
limit=10
)
for memory in memories:
print(f"{memory.summary} - {memory.created_at}")Complete Example
A customer support bot that remembers past interactions:
support_bot.py
from aphelion import Aphelion
client = Aphelion(
api_key="ap_live_...",
agent="support-bot"
)
def handle_inquiry(user_message: str, user_email: str):
# Check if customer exists in memory
memories = client.memory.search(f"customer {user_email}")
if memories:
customer_id = memories[0].result_preview.get("id")
else:
# Create customer in Stripe
customer = client.execute("stripe.customers.create", {
"email": user_email
})
customer_id = customer["id"]
# Create support ticket in Jira
ticket = client.execute("jira.issues.create", {
"project": "SUP",
"summary": f"Support request from {user_email}",
"description": user_message,
"issuetype": {"name": "Support"}
})
# Send confirmation via Slack
client.execute("slack.messages.post", {
"channel": "#support",
"text": f"New ticket {ticket['key']} from {user_email}"
})
return ticket["key"]